Universal approximation property of stochastic configuration networks for time series
Abstract For the purpose of processing sequential data, such as time series, and addressing the challenge of manually tuning the architecture of traditional recurrent neural networks (RNNs), this paper introduces a novel approach-the Recurrent Stochastic Configuration Network (RSCN). This network is...
Main Authors: | Jin-Xi Zhang, Hangyi Zhao, Xuefeng Zhang |
---|---|
格式: | Article |
語言: | English |
出版: |
Springer
2024-03-01
|
叢編: | Industrial Artificial Intelligence |
主題: | |
在線閱讀: | https://doi.org/10.1007/s44244-024-00017-7 |
相似書籍
-
Efficiency optimization methods for stochastic configuration networks
由: Aijun Yan, et al.
出版: (2024-06-01) -
Deep stacked stochastic configuration networks for lifelong learning of non-stationary data streams
由: Pratama, Mahardhika, et al.
出版: (2021) -
Multi-Task Learning Based on Stochastic Configuration Networks
由: Xue-Mei Dong, et al.
出版: (2022-08-01) -
Corrigendum: Multi-task learning based on Stochastic Configuration Networks
由: Xue-Mei Dong, et al.
出版: (2023-09-01) -
Vibration Signal Classification Using Stochastic Configuration Networks Ensemble
由: Qinxia Wang, et al.
出版: (2024-06-01)