Universal approximation property of stochastic configuration networks for time series
Abstract For the purpose of processing sequential data, such as time series, and addressing the challenge of manually tuning the architecture of traditional recurrent neural networks (RNNs), this paper introduces a novel approach-the Recurrent Stochastic Configuration Network (RSCN). This network is...
Main Authors: | Jin-Xi Zhang, Hangyi Zhao, Xuefeng Zhang |
---|---|
פורמט: | Article |
שפה: | English |
יצא לאור: |
Springer
2024-03-01
|
סדרה: | Industrial Artificial Intelligence |
נושאים: | |
גישה מקוונת: | https://doi.org/10.1007/s44244-024-00017-7 |
פריטים דומים
-
Efficiency optimization methods for stochastic configuration networks
מאת: Aijun Yan, et al.
יצא לאור: (2024-06-01) -
Deep stacked stochastic configuration networks for lifelong learning of non-stationary data streams
מאת: Pratama, Mahardhika, et al.
יצא לאור: (2021) -
Multi-Task Learning Based on Stochastic Configuration Networks
מאת: Xue-Mei Dong, et al.
יצא לאור: (2022-08-01) -
Corrigendum: Multi-task learning based on Stochastic Configuration Networks
מאת: Xue-Mei Dong, et al.
יצא לאור: (2023-09-01) -
Vibration Signal Classification Using Stochastic Configuration Networks Ensemble
מאת: Qinxia Wang, et al.
יצא לאור: (2024-06-01)