Universal approximation property of stochastic configuration networks for time series
Abstract For the purpose of processing sequential data, such as time series, and addressing the challenge of manually tuning the architecture of traditional recurrent neural networks (RNNs), this paper introduces a novel approach-the Recurrent Stochastic Configuration Network (RSCN). This network is...
Hlavní autoři: | Jin-Xi Zhang, Hangyi Zhao, Xuefeng Zhang |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
Springer
2024-03-01
|
Edice: | Industrial Artificial Intelligence |
Témata: | |
On-line přístup: | https://doi.org/10.1007/s44244-024-00017-7 |
Podobné jednotky
-
Efficiency optimization methods for stochastic configuration networks
Autor: Aijun Yan, a další
Vydáno: (2024-06-01) -
Deep stacked stochastic configuration networks for lifelong learning of non-stationary data streams
Autor: Pratama, Mahardhika, a další
Vydáno: (2021) -
Multi-Task Learning Based on Stochastic Configuration Networks
Autor: Xue-Mei Dong, a další
Vydáno: (2022-08-01) -
Corrigendum: Multi-task learning based on Stochastic Configuration Networks
Autor: Xue-Mei Dong, a další
Vydáno: (2023-09-01) -
Vibration Signal Classification Using Stochastic Configuration Networks Ensemble
Autor: Qinxia Wang, a další
Vydáno: (2024-06-01)