Universal approximation property of stochastic configuration networks for time series
Abstract For the purpose of processing sequential data, such as time series, and addressing the challenge of manually tuning the architecture of traditional recurrent neural networks (RNNs), this paper introduces a novel approach-the Recurrent Stochastic Configuration Network (RSCN). This network is...
Egile Nagusiak: | Jin-Xi Zhang, Hangyi Zhao, Xuefeng Zhang |
---|---|
Formatua: | Artikulua |
Hizkuntza: | English |
Argitaratua: |
Springer
2024-03-01
|
Saila: | Industrial Artificial Intelligence |
Gaiak: | |
Sarrera elektronikoa: | https://doi.org/10.1007/s44244-024-00017-7 |
Antzeko izenburuak
-
Efficiency optimization methods for stochastic configuration networks
nork: Aijun Yan, et al.
Argitaratua: (2024-06-01) -
Deep stacked stochastic configuration networks for lifelong learning of non-stationary data streams
nork: Pratama, Mahardhika, et al.
Argitaratua: (2021) -
Multi-Task Learning Based on Stochastic Configuration Networks
nork: Xue-Mei Dong, et al.
Argitaratua: (2022-08-01) -
Corrigendum: Multi-task learning based on Stochastic Configuration Networks
nork: Xue-Mei Dong, et al.
Argitaratua: (2023-09-01) -
Vibration Signal Classification Using Stochastic Configuration Networks Ensemble
nork: Qinxia Wang, et al.
Argitaratua: (2024-06-01)