Universal approximation property of stochastic configuration networks for time series
Abstract For the purpose of processing sequential data, such as time series, and addressing the challenge of manually tuning the architecture of traditional recurrent neural networks (RNNs), this paper introduces a novel approach-the Recurrent Stochastic Configuration Network (RSCN). This network is...
Hoofdauteurs: | Jin-Xi Zhang, Hangyi Zhao, Xuefeng Zhang |
---|---|
Formaat: | Artikel |
Taal: | English |
Gepubliceerd in: |
Springer
2024-03-01
|
Reeks: | Industrial Artificial Intelligence |
Onderwerpen: | |
Online toegang: | https://doi.org/10.1007/s44244-024-00017-7 |
Gelijkaardige items
-
Efficiency optimization methods for stochastic configuration networks
door: Aijun Yan, et al.
Gepubliceerd in: (2024-06-01) -
Deep stacked stochastic configuration networks for lifelong learning of non-stationary data streams
door: Pratama, Mahardhika, et al.
Gepubliceerd in: (2021) -
Multi-Task Learning Based on Stochastic Configuration Networks
door: Xue-Mei Dong, et al.
Gepubliceerd in: (2022-08-01) -
Corrigendum: Multi-task learning based on Stochastic Configuration Networks
door: Xue-Mei Dong, et al.
Gepubliceerd in: (2023-09-01) -
Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction
door: Rohitash Chandra, et al.
Gepubliceerd in: (2021-01-01)