Semantic Point Cloud-Based Adaptive Multiple Object Detection and Tracking for Autonomous Vehicles
LiDAR-based Multiple Object Detection and Tracking (MODT) is one of the essential tasks in autonomous driving. Since MODT is directly related to the safety of an autonomous vehicle, it is critical to provide reliable information about the surrounding objects. For that reason, we propose a semantic p...
Hoofdauteurs: | Soyeong Kim, Jinsu Ha, Kichun Jo |
---|---|
Formaat: | Artikel |
Taal: | English |
Gepubliceerd in: |
IEEE
2021-01-01
|
Reeks: | IEEE Access |
Onderwerpen: | |
Online toegang: | https://ieeexplore.ieee.org/document/9627603/ |
Gelijkaardige items
-
Automatic Point Cloud Semantic Segmentation of Complex Railway Environments
door: Daniel Lamas, et al.
Gepubliceerd in: (2021-06-01) -
Semantic Point Cloud Mapping of LiDAR Based on Probabilistic Uncertainty Modeling for Autonomous Driving
door: Sungjin Cho, et al.
Gepubliceerd in: (2020-10-01) -
An improved point cloud denoising method in adverse weather conditions based on PP-LiteSeg network
door: Wenzhen Zhang, et al.
Gepubliceerd in: (2024-01-01) -
PVI-Net: Point–Voxel–Image Fusion for Semantic Segmentation of Point Clouds in Large-Scale Autonomous Driving Scenarios
door: Zongshun Wang, et al.
Gepubliceerd in: (2024-03-01) -
Evaluation of Tree Object Segmentation Performance for Individual Tree Recognition Using Remote Sensing Techniques Based on Urban Forest Green Structures
door: Uk-Je Sung, et al.
Gepubliceerd in: (2024-11-01)