Semantic Point Cloud-Based Adaptive Multiple Object Detection and Tracking for Autonomous Vehicles
LiDAR-based Multiple Object Detection and Tracking (MODT) is one of the essential tasks in autonomous driving. Since MODT is directly related to the safety of an autonomous vehicle, it is critical to provide reliable information about the surrounding objects. For that reason, we propose a semantic p...
Hlavní autoři: | Soyeong Kim, Jinsu Ha, Kichun Jo |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
IEEE
2021-01-01
|
Edice: | IEEE Access |
Témata: | |
On-line přístup: | https://ieeexplore.ieee.org/document/9627603/ |
Podobné jednotky
-
Automatic Point Cloud Semantic Segmentation of Complex Railway Environments
Autor: Daniel Lamas, a další
Vydáno: (2021-06-01) -
Semantic Point Cloud Mapping of LiDAR Based on Probabilistic Uncertainty Modeling for Autonomous Driving
Autor: Sungjin Cho, a další
Vydáno: (2020-10-01) -
An improved point cloud denoising method in adverse weather conditions based on PP-LiteSeg network
Autor: Wenzhen Zhang, a další
Vydáno: (2024-01-01) -
PVI-Net: Point–Voxel–Image Fusion for Semantic Segmentation of Point Clouds in Large-Scale Autonomous Driving Scenarios
Autor: Zongshun Wang, a další
Vydáno: (2024-03-01) -
Evaluation of Tree Object Segmentation Performance for Individual Tree Recognition Using Remote Sensing Techniques Based on Urban Forest Green Structures
Autor: Uk-Je Sung, a další
Vydáno: (2024-11-01)