Improving Density Estimation by Incorporating Spatial Information
Given discrete event data, we wish to produce a probability density that can model the relative probability of events occurring in a spatial region. Common methods of density estimation, such as Kernel Density Estimation, do not incorporate geographical information. Using these methods could result...
Main Authors: | Andrea L. Bertozzi, George O. Mohler, Todd Wittman, Matthew S. Keegan, Laura M. Smith |
---|---|
格式: | 文件 |
语言: | English |
出版: |
SpringerOpen
2010-01-01
|
丛编: | EURASIP Journal on Advances in Signal Processing |
在线阅读: | http://dx.doi.org/10.1155/2010/265631 |
相似书籍
-
Improving Density Estimation by Incorporating Spatial Information
由: Smith LauraM, et al.
出版: (2010-01-01) -
Non‐invasive mark–resight surveys for brown bears: Incorporating spatial information to improve landscape‐scale monitoring of density and distribution
由: Joshua H. Schmidt, et al.
出版: (2023-10-01) -
Incorporating simulated spatial context information improves the effectiveness of contrastive learning models
由: Lizhen Zhu, et al.
出版: (2024-05-01) -
Incorporating 16S gene copy number information improves estimates of microbial diversity and abundance.
由: Steven W Kembel, et al.
出版: (2012-01-01) -
A Spatial Location Representation Method Incorporating Boundary Information
由: Hui Jiang, et al.
出版: (2023-07-01)