Improving Density Estimation by Incorporating Spatial Information

Given discrete event data, we wish to produce a probability density that can model the relative probability of events occurring in a spatial region. Common methods of density estimation, such as Kernel Density Estimation, do not incorporate geographical information. Using these methods could result...

全面介绍

书目详细资料
Main Authors: Andrea L. Bertozzi, George O. Mohler, Todd Wittman, Matthew S. Keegan, Laura M. Smith
格式: 文件
语言:English
出版: SpringerOpen 2010-01-01
丛编:EURASIP Journal on Advances in Signal Processing
在线阅读:http://dx.doi.org/10.1155/2010/265631

相似书籍