Brain-inspired semantic data augmentation for multi-style images
Data augmentation is an effective technique for automatically expanding training data in deep learning. Brain-inspired methods are approaches that draw inspiration from the functionality and structure of the human brain and apply these mechanisms and principles to artificial intelligence and compute...
المؤلفون الرئيسيون: | Wei Wang, Zhaowei Shang, Chengxing Li |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Frontiers Media S.A.
2024-03-01
|
سلاسل: | Frontiers in Neurorobotics |
الموضوعات: | |
الوصول للمادة أونلاين: | https://www.frontiersin.org/articles/10.3389/fnbot.2024.1382406/full |
مواد مشابهة
-
Multi-Modality Microscopy Image Style Augmentation for Nuclei Segmentation
حسب: Ye Liu, وآخرون
منشور في: (2022-03-01) -
Style Transfer for Data Augmentation in Convolutional Neural Networks Applied to Fire Detection
حسب: Mahmod Amintoosi
منشور في: (2022-12-01) -
Editorial: Brain-inspired navigation and sensing for robots
حسب: Hui Zhao, وآخرون
منشور في: (2023-11-01) -
Perspective and Development of Brain-Inspired Swarm Navigation
حسب: Li Weibin, Yang Donghao, Li Zhanbin, Hou Biao, Jiao Licheng
منشور في: (2023-10-01) -
Robust Nonparametric Distribution Transfer with Exposure Correction for Image Neural Style Transfer
حسب: Shuai Liu, وآخرون
منشور في: (2020-09-01)