MetaGSCA: A tool for meta-analysis of gene set differential coexpression.
Analyses of gene set differential coexpression may shed light on molecular mechanisms underlying phenotypes and diseases. However, differential coexpression analyses of conceptually similar individual studies are often inconsistent and underpowered to provide definitive results. Researchers can grea...
Автори: | Yan Guo, Hui Yu, Haocan Song, Jiapeng He, Olufunmilola Oyebamiji, Huining Kang, Jie Ping, Scott Ness, Yu Shyr, Fei Ye |
---|---|
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Public Library of Science (PLoS)
2021-05-01
|
Серія: | PLoS Computational Biology |
Онлайн доступ: | https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008976&type=printable |
Схожі ресурси
Схожі ресурси
-
Model persamaan struktural dengan generalized structured component analysis (GSCA)
за авторством: , WACIKO, Kadek Jemmy, та інші
Опубліковано: (2009) -
Comparison of Bootstrap Confidence Interval Methods for GSCA Using a Monte Carlo Simulation
за авторством: Kwanghee Jung, та інші
Опубліковано: (2019-10-01) -
Analysis of Food Security Factors in Indonesia using SEM-GSCA with the Alternating Least Squares Method
за авторством: Wardhani Utami Dewi, та інші
Опубліковано: (2024-03-01) -
GSCA-UNet: Towards Automatic Shadow Detection in Urban Aerial Imagery with Global-Spatial-Context Attention Module
за авторством: Yuwei Jin, та інші
Опубліковано: (2020-09-01) -
Social and Management Research Quantitative Analysis for Medium Sample: Comparing of Lisrel, Tetrad, GSCA, Amos, SmartPLS, WarpPLS, and SPSS
за авторством: Agus Purwanto, та інші
Опубліковано: (2020-12-01)