Smart Defect Detection in Aero-Engines: Evaluating Transfer Learning with VGG19 and Data-Efficient Image Transformer Models
This study explores the impact of transfer learning on enhancing deep learning models for detecting defects in aero-engine components. We focused on metrics such as accuracy, precision, recall, and loss to compare the performance of models VGG19 and DeiT (data-efficient image transformer). RandomSea...
Główni autorzy: | , , , |
---|---|
Format: | Artykuł |
Język: | English |
Wydane: |
MDPI AG
2025-01-01
|
Seria: | Machines |
Hasła przedmiotowe: | |
Dostęp online: | https://www.mdpi.com/2075-1702/13/1/49 |