Smart Defect Detection in Aero-Engines: Evaluating Transfer Learning with VGG19 and Data-Efficient Image Transformer Models

This study explores the impact of transfer learning on enhancing deep learning models for detecting defects in aero-engine components. We focused on metrics such as accuracy, precision, recall, and loss to compare the performance of models VGG19 and DeiT (data-efficient image transformer). RandomSea...

وصف كامل

التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Samira Mohammadi, Vahid Rahmanian, Sasan Sattarpanah Karganroudi, Mehdi Adda
التنسيق: مقال
اللغة:English
منشور في: MDPI AG 2025-01-01
سلاسل:Machines
الموضوعات:
الوصول للمادة أونلاين:https://www.mdpi.com/2075-1702/13/1/49