Sense-Assess-eXplain (SAX): building trust in autonomous vehicles in challenging real-world driving scenarios
This paper discusses ongoing work in demonstrating research in mobile autonomy in challenging driving scenarios. In our approach, we address fundamental technical issues to overcome critical barriers to assurance and regulation for largescale deployments of autonomous systems. To this end, we presen...
Autori principali: | Gadd, M, de Martini, D, Marchegiani, M, Newman, P, Kunze, L |
---|---|
Natura: | Conference item |
Lingua: | English |
Pubblicazione: |
IEEE
2021
|
Documenti analoghi
Documenti analoghi
-
Towards Safer Heuristics With Xplain
di: Karimi, Pantea, et al.
Pubblicazione: (2024) -
Improving Data Quality Control in the Xplain-DBMS
di: J A Bakker
Pubblicazione: (2012-02-01) -
Why not explain? effects of explanations on human perceptions of autonomous driving
di: Omeiza, D, et al.
Pubblicazione: (2021) -
Keep off the grass: permissible driving routes from radar with weak audio supervision
di: Williams, D, et al.
Pubblicazione: (2020) -
Assessing and explaining collision risk in dynamic environments for autonomous driving safety
di: Nahata, R, et al.
Pubblicazione: (2021)