Online variational filtering and parameter learning
We present a variational method for online state estimation and parameter learning in state-space models (SSMs), a ubiquitous class of latent variable models for sequential data. As per standard batch variational techniques, we use stochastic gradients to simultaneously optimize a lower bound on the...
Главные авторы: | Campbell, A, Shi, Y, Rainforth, T, Doucet, A |
---|---|
Формат: | Conference item |
Язык: | English |
Опубликовано: |
Curran Associates
2022
|
Схожие документы
-
Filtering variational objectives
по: Maddison, C, и др.
Опубликовано: (2017) -
Variational Online Learning Correlation Filter for Visual Tracking
по: Zhongyang Wang, и др.
Опубликовано: (2024-06-01) -
Robust inference on parameters via particle filters and sandwich covariance matrices.
по: Shephard, N, и др.
Опубликовано: (2012) -
Robust inference on parameters via particle filters and sandwich covariance matrices
по: Shephard, N, и др.
Опубликовано: (2012) -
Online parameter estimation for partially observed diffusions
по: Poyiadjis, G, и др.
Опубликовано: (2006)