Zeta elements in depth 3 and the fundamental Lie algebra of the infinitesimal Tate curve
This paper draws connections between the double shuffle equations and structure of associators; universal mixed elliptic motives as defined by Hain and Matsumoto; and the Rankin-Selberg method for modular forms for $SL_2(\mathbb{Z})$. We write down explicit formulae for zeta elements $\sigma_{2n-1}$...
Príomhchruthaitheoir: | Brown, F |
---|---|
Formáid: | Journal article |
Foilsithe / Cruthaithe: |
Cambridge University Press
2017
|
Míreanna comhchosúla
Míreanna comhchosúla
-
ZETA ELEMENTS IN DEPTH 3 AND THE FUNDAMENTAL LIE ALGEBRA OF THE INFINITESIMAL TATE CURVE
de réir: FRANCIS BROWN
Foilsithe / Cruthaithe: (2017-01-01) -
A Tannakian Interpretation of the Elliptic Infinitesimal Braid Lie Algebras
de réir: Enriquez, Benjamin, et al.
Foilsithe / Cruthaithe: (2018) -
New Applications of a Kind of Infinitesimal-Operator Lie Algebra
de réir: Honwah Tam, et al.
Foilsithe / Cruthaithe: (2016-01-01) -
Locally Homogeneous Manifolds Defined by Lie Algebra of Infinitesimal Affine Transformations
de réir: Vladimir A. Popov
Foilsithe / Cruthaithe: (2022-12-01) -
Motivic zeta functions of infinite-dimensional Lie algebras
de réir: Du Sautoy, M, et al.
Foilsithe / Cruthaithe: (2004)