SiLVR: scalable Lidar-visual reconstruction with neural radiance fields for robotic inspection
We present a neural-field-based large-scale reconstruction system that fuses lidar and vision data to generate high-quality reconstructions that are geometrically accurate and capture photo-realistic textures. This system adapts the state-of-the-art neural radiance field (NeRF) representation to als...
Huvudupphovsmän: | Tao, Y, Bhalgat, Y, Fu, LFT, Mattamala, M, Chebrolu, N, Fallon, M |
---|---|
Materialtyp: | Conference item |
Språk: | English |
Publicerad: |
IEEE
2024
|
Liknande verk
Liknande verk
-
Extrinsic calibration of camera to LIDAR using a differentiable checkerboard model
av: Fu, LFT, et al.
Publicerad: (2023) -
3D lidar reconstruction with probabilistic depth completion for robotic navigation
av: Tao, YT, et al.
Publicerad: (2022) -
Online tree reconstruction and forest inventory on a mobile robotic system
av: Freißmuth, L, et al.
Publicerad: (2024) -
Evaluation and deployment of LiDAR-based place recognition in dense forests
av: Oh, H, et al.
Publicerad: (2024) -
Strategies for large scale elastic and semantic LiDAR reconstruction
av: Wang, Y, et al.
Publicerad: (2022)