The density of rational points on curves and surfaces
Let $C$ be an irreducible projective curve of degree $d$ in $\mathbb{P}^3$, defined over $\overline{\mathbb{Q}}$. It is shown that $C$ has $O_{\varepsilon,d}(B^{2/d+\varepsilon})$ rational points of height at most $B$, for any $\varepsilon>0$, uniformly for all curves $C$. This result exten...
Главный автор: | Heath-Brown, D |
---|---|
Формат: | Journal article |
Опубликовано: |
2002
|
Схожие документы
-
The density of rational points on cubic surfaces
по: Heath-Brown, D
Опубликовано: (1997) -
The density of rational points on cubic surfaces
по: Heath-Brown, D
Опубликовано: (1997) -
The density of rational points on non-singular hypersurfaces
по: Heath-Brown, D
Опубликовано: (1994) -
Counting rational points on quadric surfaces
по: Browning, T, и др.
Опубликовано: (2018) -
The density of rational points on non-singuler hypersurfaces, I
по: Heath-Brown, D, и др.
Опубликовано: (2006)