On the evaluation complexity of constrained nonlinear least-squares and general constrained nonlinear optimization using second-order methods
<p style="text-align:justify;"> When solving the general smooth nonlinear and possibly nonconvex optimization problem involving equality and/or inequality constraints, an approximate first-order critical point of accuracy $\epsilon$ can be obtained by a second-order method using cub...
Главные авторы: | Cartis, C, Gould, N, Toint, P |
---|---|
Формат: | Journal article |
Опубликовано: |
Society for Industrial and Applied Mathematics
2015
|
Схожие документы
-
On the evaluation complexity of cubic regularization methods for potentially rank-deficient nonlinear least-squares problems and its relevance to constrained nonlinear optimization
по: Cartis, C, и др.
Опубликовано: (2013) -
Second-order optimality and beyond: characterization and evaluation complexity in convexly-constrained nonlinear optimization
по: Cartis, C, и др.
Опубликовано: (2017) -
On the complexity of finding first-order critical points in constrained nonlinear optimization
по: Cartis, C, и др.
Опубликовано: (2012) -
Corrigendum: On the complexity of finding first-order critical points in constrained nonlinear optimization
по: Cartis, C, и др.
Опубликовано: (2016) -
Evaluation complexity bounds for smooth constrained nonlinear optimization using scaled KKT conditions and high-order models
по: Cartis, C, и др.
Опубликовано: (2019)