Predicting future hospital antimicrobial resistance prevalence using machine learning
Background: Predicting antimicrobial resistance (AMR), a top global health threat, nationwide at an aggregate hospital level could help target interventions. Using machine learning, we exploit historical AMR and antimicrobial usage to predict future AMR. Methods: Antimicrobial use and AMR prevalence...
Үндсэн зохиолчид: | Vihta, K, Pritchard, E, Pouwels, KB, Hopkins, S, Guy, RL, Henderson, K, Chudasama, D, Hope, R, Muller-Pebody, B, Walker, AS, Clifton, D, Eyre, DW |
---|---|
Формат: | Journal article |
Хэл сонгох: | English |
Хэвлэсэн: |
Nature Research
2024
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Predicting future hospital antimicrobial resistance prevalence using machine learning
-н: Karina-Doris Vihta, зэрэг
Хэвлэсэн: (2024-10-01) -
Detecting changes in population trends in infection surveillance using community SARS-CoV-2 prevalence as an exemplar
-н: Pritchard, E, зэрэг
Хэвлэсэн: (2024) -
Selection and co-selection of antibiotic resistances among Escherichia coli by antibiotic use in primary care: An ecological analysis
-н: Pouwels, KB, зэрэг
Хэвлэсэн: (2019) -
Prevalence of resistance to antibiotics in children's urinary Escherichia coli isolates estimated using national surveillance data
-н: Pouwels, K, зэрэг
Хэвлэсэн: (2018) -
Omicron-associated changes in SARS-CoV-2 symptoms in the United Kingdom
-н: Vihta, K, зэрэг
Хэвлэсэн: (2022)