Predicting future hospital antimicrobial resistance prevalence using machine learning

Background: Predicting antimicrobial resistance (AMR), a top global health threat, nationwide at an aggregate hospital level could help target interventions. Using machine learning, we exploit historical AMR and antimicrobial usage to predict future AMR. Methods: Antimicrobial use and AMR prevalence...

Volledige beschrijving

Bibliografische gegevens
Hoofdauteurs: Vihta, K, Pritchard, E, Pouwels, KB, Hopkins, S, Guy, RL, Henderson, K, Chudasama, D, Hope, R, Muller-Pebody, B, Walker, AS, Clifton, D, Eyre, DW
Formaat: Journal article
Taal:English
Gepubliceerd in: Nature Research 2024

Gelijkaardige items