The trembling-hand problem for LTLf planning
Consider an agent acting to achieve its temporal goal, but with a "trembling hand". In this case, the agent may mistakenly instruct, with a certain (typically small) probability, actions that are not intended due to faults or imprecision in its action selection mechanism, thereby leading t...
主要な著者: | Yu, P, Zhu, S, De Giacomo, G, Vardi, M |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
International Joint Conference on Artificial Intelligence
2024
|
類似資料
-
LTLf best-effort synthesis in nondeterministic planning domains
著者:: De Giacomo, G, 等
出版事項: (2023) -
Symbolic LTLf best-effort synthesis
著者:: De Giacomo, G, 等
出版事項: (2023) -
Grounding LTLf specifications in image sequences
著者:: Umili, E, 等
出版事項: (2023) -
Towards ILP-based LTLf passive learning
著者:: Ielo, A, 等
出版事項: (2023) -
Composition of stochastic services for LTLf goal specifications
著者:: De Giacomo, G, 等
出版事項: (2024)