Polynomial bounds for chromatic number II: excluding a star-forest

The Gyarfas-Sumner conjecture says that for every forest $H$, there is a function $f$ such that if $G$ is $H$-free then $\chi(G)\le f(\omega(G))$ (where $\chi, \omega$ are the chromatic number and the clique number of $G$). Louis Esperet conjectured that, whenever such a statement holds, $f$ can be...

Full beskrivning

Bibliografiska uppgifter
Huvudupphovsmän: Scott, A, Seymour, P, Spirkl, S
Materialtyp: Journal article
Språk:English
Publicerad: Wiley 2022
Ämnen: