Polynomial bounds for chromatic number II: excluding a star-forest
The Gyarfas-Sumner conjecture says that for every forest $H$, there is a function $f$ such that if $G$ is $H$-free then $\chi(G)\le f(\omega(G))$ (where $\chi, \omega$ are the chromatic number and the clique number of $G$). Louis Esperet conjectured that, whenever such a statement holds, $f$ can be...
Autors principals: | , , |
---|---|
Format: | Journal article |
Idioma: | English |
Publicat: |
Wiley
2022
|
Matèries: |