Fast radar motion estimation with a learnt focus of attention using weak supervision
This paper is about fast motion estimation with scanning radar. We use weak supervision to train a focus of attention policy which actively down-samples the measurement stream before data association steps are undertaken. At training, we avoid laborious manual labelling by exploiting short-term sens...
Hlavní autoři: | Aldera, R, De Martini, D, Gadd, M, Newman, p |
---|---|
Médium: | Conference item |
Vydáno: |
IEEE
2019
|
Podobné jednotky
-
What goes around: leveraging a constant-curvature motion constraint in radar odometry
Autor: Aldera, R, a další
Vydáno: (2022) -
RSS-Net: weakly-supervised multi-class semantic segmentation with FMCW radar
Autor: Kaul, P, a další
Vydáno: (2021) -
Keep off the grass: permissible driving routes from radar with weak audio supervision
Autor: Williams, D, a další
Vydáno: (2020) -
What could go wrong? Introspective radar odometry in challenging environments
Autor: Aldera, R, a další
Vydáno: (2019) -
Systems-driven improvements to radar-only ego-motion estimation
Autor: Aldera, R
Vydáno: (2021)