Learning latent permutations with Gumbel-Sinkhorn networks
Permutations and matchings are core building blocks in a variety of latent variable models, as they allow us to align, canonicalize, and sort data. Learning in such models is difficult, however, because exact marginalization over these combinatorial objects is intractable. In response, this paper in...
Main Authors: | Mena, G, Snoek, J, Linderman, S, Belanger, D |
---|---|
פורמט: | Conference item |
שפה: | English |
יצא לאור: |
OpenReview
2018
|
פריטים דומים
-
Learning GANs in simultaneous game using Sinkhorn with positive features
מאת: Risman Adnan, et al.
יצא לאור: (2022) -
Learning GANs in Simultaneous Game Using Sinkhorn With Positive Features
מאת: Risman Adnan, et al.
יצא לאור: (2021-01-01) -
Equivalence between the Fitness-Complexity and the Sinkhorn-Knopp algorithms
מאת: D Mazzilli, et al.
יצא לאור: (2024-01-01) -
Distance-weighted Sinkhorn loss for Alzheimer’s disease classification
מאת: Zexuan Wang, et al.
יצא לאור: (2024-03-01) -
Overrelaxed Sinkhorn–Knopp Algorithm for Regularized Optimal Transport
מאת: Alexis Thibault, et al.
יצא לאור: (2021-04-01)