A comparison of low-complexity real-time feature extraction for neuromorphic speech recognition
This paper presents a real-time, low-complexity neuromorphic speech recognition system using a spiking silicon cochlea, a feature extraction module and a population encoding method based Neural Engineering Framework (NEF)/Extreme Learning Machine (ELM) classifier IC. Several feature extraction metho...
Κύριοι συγγραφείς: | Acharya, Jyotibdha, Patil, Aakash, Li, Xiaoya, Chen, Yi, Liu, Shih-Chii, Basu, Arindam |
---|---|
Άλλοι συγγραφείς: | Interdisciplinary Graduate School (IGS) |
Μορφή: | Journal Article |
Γλώσσα: | English |
Έκδοση: |
2018
|
Θέματα: | |
Διαθέσιμο Online: | https://hdl.handle.net/10356/85120 http://hdl.handle.net/10220/45134 |
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Miniature cochlea: a study of radiological measurements and its implications during the cochlear implant surgery
ανά: Mahmoud N. Tarabishi, κ.ά.
Έκδοση: (2016-07-01) -
Feature Extraction Techniques for Low-Power Ambulatory Wheeze Detection Wearables
ανά: Ser, Wee, κ.ά.
Έκδοση: (2017) -
A hybrid neuromorphic object tracking and classification framework for real-time systems
ανά: Ussa, Andres, κ.ά.
Έκδοση: (2023) -
Event-based neuromorphic systems /
ανά: Liu, Shih-Chii, κ.ά.
Έκδοση: (2015) -
Neuromorphic machine learning for audio processing : from bio-inspiration to biomedical applications
ανά: Acharya, Jyotibdha
Έκδοση: (2020)