Accurate Prediction and Reliable Parameter Optimization of Neural Network for Semiconductor Process Monitoring and Technology Development
Herein, novel neural network (NN) methods that improve prediction accuracy and reduce output variance of the optimized input in the gradient method for cross‐sectional data are proposed, and the variability evaluation approach of optimized inputs in the semiconductor process is suggested. Specifical...
Những tác giả chính: | Hyeok Yun, Chang-Hyeon An, Hyundong Jang, Kyeongrae Cho, Jeong-Sik Lee, Seungjoon Eom, Choong-Ki Kim, Min-Soo Yoo, Hyun-Chul Choi, Rock-Hyun Baek |
---|---|
Định dạng: | Bài viết |
Ngôn ngữ: | English |
Được phát hành: |
Wiley
2023-09-01
|
Loạt: | Advanced Intelligent Systems |
Những chủ đề: | |
Truy cập trực tuyến: | https://doi.org/10.1002/aisy.202300089 |
Những quyển sách tương tự
-
Nonlinear Variation Decomposition of Neural Networks for Holistic Semiconductor Process Monitoring
Bằng: Hyeok Yun, et al.
Được phát hành: (2024-10-01) -
Modeling of 3D NAND Characteristics for Cross‐Temperature by Using Graph Neural Network and Its Application
Bằng: Kyeongrae Cho, et al.
Được phát hành: (2023-12-01) -
Neural Compact Modeling Framework for Flexible Model Parameter Selection with High Accuracy and Fast SPICE Simulation
Bằng: Seungjoon Eom, et al.
Được phát hành: (2024-04-01) -
Optimal Energetic-Trap Distribution of Nano-Scaled Charge Trap Nitride for Wider <i>V<sub>th</sub></i> Window in 3D NAND Flash Using a Machine-Learning Method
Bằng: Kihoon Nam, et al.
Được phát hành: (2022-05-01) -
Comparison of the efficiency of zero and first order minimization methods in neural networks
Bằng: E. A. Gubareva, et al.
Được phát hành: (2022-12-01)