An improved random forest-based computational model for predicting novel miRNA-disease associations
Background: A large body of evidence shows that miRNA regulates the expression of its target genes at post-transcriptional level and the dysregulation of miRNA is related to many complex human diseases. Accurately discovering disease-related miRNAs is conductive to the exploring of the pathogenesis...
Главные авторы: | Yao, Dengju, Zhan, Xiaojuan, Kwoh, Chee-Keong |
---|---|
Другие авторы: | School of Computer Science and Engineering |
Формат: | Journal Article |
Язык: | English |
Опубликовано: |
2020
|
Предметы: | |
Online-ссылка: | https://hdl.handle.net/10356/142190 |
Схожие документы
-
ncRNA2MetS : a manually curated database for non-coding RNAs associated with metabolic syndrome
по: Yao, Dengju, и др.
Опубликовано: (2020) -
Mapping miRNA research in schizophrenia: a scientometric review
по: Lim, Mengyu, и др.
Опубликовано: (2023) -
Deep sequencing of small RNA facilitates tissue and sex associated microRNA discovery in zebrafish
по: Vaz, Candida, и др.
Опубликовано: (2015) -
miRNA biogenesis and developmental phase transition in the liverwort M. polymorpha
по: Streubel, S
Опубликовано: (2019) -
Cyclin D1-mediated microRNA expression signature predicts breast cancer outcome
по: Ertel, Adam, и др.
Опубликовано: (2018)