Deep learning modeling approach for metasurfaces with high degrees of freedom
© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement Metasurfaces have shown promising potentials in shaping optical wavefronts while remaining compact compared to bulky geometric optics devices. The design of meta-atoms, the fundamental building blocks of me...
Autori principali: | an, sensong, Zheng, Bowen, Shalaginov, Mikhail Y, Tang, Hong, Li, Hang, Zhou, Li, Ding, Jun, Agarwal, Anuradha Murthy, Rivero-Baleine, Clara, Kang, Myungkoo, Richardson, Kathleen A, Gu, Tian, Hu, Juejun, Fowler, Clayton, zhang, hualiang |
---|---|
Altri autori: | Massachusetts Institute of Technology. Department of Materials Science and Engineering |
Natura: | Articolo |
Lingua: | English |
Pubblicazione: |
The Optical Society
2022
|
Accesso online: | https://hdl.handle.net/1721.1/142621 |
Documenti analoghi
Documenti analoghi
-
A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design
di: An, Sensong, et al.
Pubblicazione: (2020) -
Multifunctional Metasurface Design with a Generative Adversarial Network
di: An, Sensong, et al.
Pubblicazione: (2022) -
Reconfigurable Parfocal Zoom Metalens
di: Yang, Fan, et al.
Pubblicazione: (2022) -
Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material
di: Zhang, Yifei, et al.
Pubblicazione: (2022) -
Reconfigurable all-dielectric metalens based on phase change materials
di: Shalaginov, Mikhail Y, et al.
Pubblicazione: (2022)